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Abstract: Nitrogen use efficiency (NUE) is a central issue to address regarding the nitrogen (N) 

uptake by crops, and can be improved by applying the correct dose of fertilizers at specific points 

in the fields according to the plants status. The N nutrition index (NNI) was developed to diagnose 

plant N status. However, its determination requires destructive, time-consuming measurements of 

plant N content (PNC) and plant dry matter (PDM). To overcome logistical and economic problems, 

it is necessary to assesses crop NNI rapidly and non-destructively. According to the literature which 

we reviewed, it, as well as PNC and PDM, can be estimated using vegetation indices obtained from 

remote sensing. While sensory techniques are useful for measuring PNC, crop growth models esti-

mate crop N requirements. Research has indicated that the accuracy of the estimate is increased 

through the integration of remote sensing data to periodically update the model, considering the 

spatial variability in the plot. However, this combination of data presents some difficulties. On one 

hand, at the level of remote sensing is the identification of the most appropriate sensor for each 

situation, and on the other hand, at the level of crop growth models is the estimation of the needs 

of crops in the interest stages of growth. The methods used to couple remote sensing data with the 

needs of crops estimated by crop growth models must be very well calibrated, especially for the 

crop parameters and for the environment around this crop. Therefore, this paper reviews currently 

available information from Google Scholar and ScienceDirect to identify studies relevant to crops 

N nutrition status, to assess crop NNI through non-destructive methods, and to integrate the remote 

sensing data on crop models from which the cited articles were selected. Finally, we discuss further 

research on PNC determination via remote sensing and algorithms to help farmers with field appli-

cation. Although some knowledge about this determination is still necessary, we can define three 

guidelines to aid in choosing a correct platform. 

Keywords: conservative agriculture; crop nutrition; nitrogen crop sensor; machine learning;  

decision support systems 

 

1. Introduction 

For European farmers, fertilizer costs represent, on average, around 6% of input 

costs, and can reach up to 12% for arable crop producers. The European Commission (EC) 

presented a communication in November 2022 which presented actions and guidelines to 

optimize the use of fertilizers and reduce our dependence on them while maintaining 

production [1]. In the Mediterranean area, it is necessary to reduce production costs and 
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the pollution caused by agricultural activity; these goals can be achieved by following 

conservative agriculture practices. Input management should also be improved by apply-

ing precise doses of nitrogen (N) to each specific point of the field [2]. It is necessary to 

avoid the uncontrolled and injudicious use of fertilizers without a strategy or method, as 

the use of nutrient site-specific management is essential to improving soil fertility and 

crop productivity [3]. A good management strategy can include the use of mineral ferti-

lizers combined with organic manures to increase the total nitrogen stock in the soil, guar-

anteeing increases in production over time and, consequently, higher net revenues. The 

use of organic fertilizers also makes it possible to improve the environment of the soil 

rhizosphere, improving the quality of production. The use of organic fertilizer also makes 

it possible to recycle nutrients and prevent them from causing pollution, thus improving 

fertilizer use efficiency [4–6]. Pollution can be significant in the soil, water, and air [5]. 

N use efficiency (NUE) can be improved both in space and in time through precision 

N management. This type of management refers to the need to accurately estimate the 

crop’s N needs and ensure that the correct dose of fertilizer is provided. Through this 

relationship between accumulated N and needs, farmers can more easily reduce yield 

gaps [7–10]. To facilitate the adjustment of N fertilization, the N nutrition index (NNI) was 

developed [11,12]. To estimate this index, it is necessary to know the plant N content 

(PNC) and the crop biomass, which requires substantial time, sophisticated laboratory 

equipment, and associated costs. The time required for sample collection and analyses 

may disallow timely responses from producers to crop N deficiencies [13]. To overcome 

these logistical and economic problems, it is necessary to calibrate the NNI using other 

methods [14]. 

NNI can be estimated remotely using optical sensing [9,15–20]. This indirect estimate 

of the NNI comes from an analysis of the relationship between the vegetation indices (VIs) 

that remotely detect the PNC, as well as the analysis of the spatially distributed values of 

N concentration in plant dry matter [21,22]. Previous studies have suggested classifying 

the non-destructive NNI acquisition methods by corresponding platforms [20]. 

While sensory techniques are useful for measuring PNC, there are also crop growth 

models that estimate crop N requirements. The accuracy of the estimate is increased by 

integrating remote sensing data to periodically update the model, considering the spatial 

variability in the plot [23]. However, this combination of data has some difficulties [23–

25]. Crop models (CMs) deal with different crop growth stages and with different N con-

centrations in plants (highly dependent on initial growth stages) [26–28]. This integration 

of data into an N recommendation system for different management zones may involve 

the use of more complex algorithms, such as machine learning (ML) [29]. 

In this paper, we will address some issues related to the process of assessing crop N 

nutrition, especially by non-destructive methods, such as leaf-based and ground-canopy 

sensors, unmanned aerial vehicle (UAV) sensors, and satellite platforms. The remote PNC 

estimates vary significantly throughout the crop cycle, and may show insufficient values 

in the initial crop growth stages of development when soil vegetation cover is reduced. 

These estimative values can also be changed in more advanced states through index sat-

uration. They may also vary according to the measuring devices used and their resolution. 

We will also focus on remote sensing data integration in CMs, as well as the constraints 

and uncertainties of this integration. It is necessary to clarify the relationship between the 

crop N status and the N dose to be applied, depending on the crop growth period, and to 

achieve an in-season production process. This is the importance of using CMs. However, 

a problem that arises is the inability of linear methods to join remote sensing data with 

CMs in order to be able to consider most of the problems that affect crops beyond the soil–

plant–atmosphere relationship. There is a lack of knowledge on the use of sensors that 

provide digital information regarding the parameters of interest to adjust the models. 

Given the specific conditions of each region and the context in which nitrogen fertilizers 

are involved, these technologies must be made available to farmers so that they can be 

used in crop production. 
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There is a need to identify the state of the art of integrating crop N status with remote 

sensing data in crop model approaches for the purpose of precision top-dressing fertiliza-

tion of Mediterranean crops. To obtain insight, studies were analyzed from several di-

mensions. Firstly, the following three research questions (RQs) were defined: 

 RQ1: Is it possible to measure PNC exclusively by non-destructive methods? 

 RQ2: What resources have been used in the recent literature to assess crop N nutrition 

status? 

 RQ3: What are the challenges in the prediction of the Mediterranean crop N nutrition 

status using only non-destructive methods, and how accurately is it possible to meas-

ure this status? 

The core of these questions is discussed, and the questions are answered, in the Cur-

rent Challenges, Future Trends, and Conclusions sections. 

2. Materials and Methods 

A literature review was conducted using Google Scholar® and ScienceDirect®, focus-

ing attention on the most recent articles (2017–2023) in which the most recent technologi-

cal approaches were assessed. The keywords used for the search were “Nitrogen Nutri-

tion Index,” “Remote Sensing,” “Crop Model”, “Nitrogen Use Efficiency”, and “Mediter-

ranean”. Although several studies were found, the introduction of the term “Mediterra-

nean” in the keywords reduced the number of studies resulting from the analysis more 

than expected. The application of NNI, remote sensing, CMs, and ML was not only con-

sidered for Mediterranean crops, but they were prioritized. 

To exclude irrelevant studies, the studies were analyzed and graded based on re-

moval criteria (RC), as follows: 

 RC 1—Publication is not related to the sustainability of the agricultural sector; 

 RC 2—Publication is not related to crop nitrogen nutrition status; 

 RC 3—Publication is not written in English; 

 RC 4—Publication is a duplicate; 

 RC 5—Full text of the publication is not available. 

After applying the RC, the remaining articles were examined in greater depth to iden-

tify the ones most representative of each theme. A total of 148 references were selected for 

further analysis, 32 of which were review articles. 

3. Estimation of Crop N Nutrition Status 

3.1. NUE 

N is one of the decisive elements of plant growth, crop biomass accumulation, and 

yield formation. Managing N as an input in crop production requires extensive 

knowledge of what influences crop N status. Understanding N management in relation 

to N supply and demand, as well as the underlying processes governing N uptake and 

distribution in plant organs, is imperative for quantifying the dynamics of N in the crop-

ping system. N fertilization management at key growth stages is a growing practice for 

increasing NUE. It is a function of the N uptake from natural and fertilizer-borne sources, 

N assimilation, and plant physiology-specific rates of translocating N into harvestable bi-

omass [20]. The complexity assumed in the calculation of the NUE may vary according to 

the detail required in the estimated result. Complexity can be increased by adding envi-

ronmental variables and geochemical measurements [30]. Moreover, localized environ-

mental resources, such as topographic and climatic attributes, were considered to predict 

habitat suitability [31]. The level of complexity of the algorithms must be in accordance 

with the needs of the farmers and their knowledge of how to deal with them. 

Due to the importance that agricultural ecosystems have for the survival of human 

beings and the development of the social economy [32], algorithms that take economic, 

agronomic, and environmental aspects into account are more accurate and reliable [29]. 

The change in the quality of the environment depends on human attitudes [33]. Conceição 
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et al. [34] indicated that the rainfed characteristics of the Alentejo region cause it to require 

great care in terms of controlling nitrate concentrations, especially in vulnerable areas. 

These characteristics reduce the efficiency of nitrogen top-dressed fertilizations, which 

suggests new forms of mechanization based on precision farming technologies, namely, 

variable rate application (VRA). VRA technology detects information about a given crop 

system and allows a system to make more informed decisions. 

As mentioned previously, the most appropriate method to calculate NUE is deter-

mined according to the context in which the research is inserted, but also by the available 

data. Usually, the calculation of this efficiency is strongly related to the N recovery effi-

ciency. In this calculation, the absorption of N is measured in relation to the available 

quantity of the nutrient during fertilization. [30]. Parallel to this measurement, isotopes 

can be used, which are a useful tool in agricultural studies, as they enable the tracing of a 

particular element behaving similarly to its non-isotopic analog through various path-

ways in order to obtain quantitative measurements. The 15N isotope is stable and occurs 

naturally, with an abundance of 0.3663% [30]. Mass spectrometry is the most common and 

precise method to measure this stable isotope. The use of 15N-labeled fertilizer allows us 

to distinguish whether recently mineralized N or initial soil-borne N is taken up by the 

plant [30]. 

The procedure followed for the calculation of this fraction and other derived param-

eters for N using 15N-labeled materials is given below [30]: 

 Measurements needed for experiments with 15N: 

1. PDM yield for the whole plant or sub-divided into plant parts; 

2. Total N concentration (% N in PDM) of the whole plant or plant parts, as in point 1; 

this is determined by chemical methods, e.g., Kjeldahl, or by combustion (Dumas); 

3. Plant % 15N abundance, which is analyzed by emission or mass spectrometry; 

4. Fertilizer % 15N abundance; 

5. 15N-labeled fertilizer(s) used and N rate(s) of application. 

 Calculations for experiments with 15N: 

6. % 15N abundance is transformed into atom % 15N excess by subtracting the natural 

abundance from the % N abundance of the sample. Afterwards, the following calcu-

lation (Equation (1)) can be made: 

%Ndff = (atom%15Nexcessplant/atom%15Nexcessfertilizer) × 100, (1) 

where %Ndff is % N derived from the fertilizer, for instance, if Ndff = 0.25, this means that 

¼ of the N in the plant came from the fertilizer. If soil and fertilizer were the only sources 

of N available to the plant, then the remaining ¾ of the N in the plant came from the soil. 

If these fractions are expressed in percentages, then %Ndff = 25% and %Ndfs = 75%, where 

%Ndfs is % N derived from the soil. 

7. PDM yield per unit area (Equation (2)): 

PDM yield (kg/ha) = FW (kg) × [10,000 (m2/ha)/area harvested (m2)] × [SDW 

(kg)/SFW (kg)], 
(2) 

where FW is the fresh weight per area harvested and SDW and SFW are the subsample 

dry and fresh weight, respectively. 

8. N yield per unit area (Equation (3)): 

N yield (kg/ha) = PDM yield (kg/ha) × [%N/100] (3) 

9. Fertilizer N yield per unit area (Equation (4)): 

Fertilizer N yield (kg/ha) = N yield (kg/ha) × [%Ndff/100] (4) 

10. Utilization of N from the fertilizer (Equation (5)): 
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% Fertilizer N utilization = (Fertilizer N yield/Rate of N application) × 100 (5) 

3.2. Critical N Concentration and Critical N Dilution Curves 

The concept of critical N concentration (Nc) is essential to calculate the N state of the 

crop from the PNC. Nc is the N concentration required to achieve maximum plant growth 

[35]. Lemaire et al. [36] proposed the %Nc as a negative power function called a “dilution 

curve” (Equation (6)): 

%Nc = a.PDM− b, (6) 

where PDM is the aboveground plant dry biomass (ton ha−1), and %Nc is the PNC articu-

lated as a percentage of PDM, where a represents the N concentration in the PDM when 

PDM = 1 ton ha−1, and b is a statistical parameter that influences the slope of the relation-

ship [37]. The soil water status might have affected this slope [38]. The inter- and intra-

annual variability of precipitation patterns and the frequent occurrence of heat stress pe-

riods are characteristics of the Mediterranean climate and promote water deficit situations 

with significant productivity reductions. This unfavorable distribution tends to increase 

with climate change [39]. 

Dilution curves for arable crops have been developed by many researchers and com-

pared in different agroecological zones, years, cultivars, agronomic management prac-

tices, and climatic conditions, and are significantly positively correlated with curve pa-

rameters a and b [20,40]. Moreover, wheat genotypes with high PNC in the early growth 

period had a higher value of a and b curve parameters [40,41]. Fernandez et al. [41] high-

lighted that it is important to use data from young stages when estimating the curves. In 

these phases, %Nc is high and PDM is quite low. However, observations below 1 ton ha−1 

should not be incorporated for model fitting. 

C3 plants have different parameters for the maximum N dilution curves compared 

to C4 plants [42]. Lemaire and Gastal [43] proposed parameter values for various C3 (%Nc 

= 4.8PDM− 0.34) and C4 (%Nc = 3.6PDM− 0.34) crops. When comparing similar biomasses, the 

observed difference between these two groups appears as a difference in the N concentra-

tion of the metabolic tissues, as well as in the structural compartment proportion in the 

total plant biomass. The coefficient a varies between C3 and C4 species according to the 

differences in the metabolic pathways for CO2 assimilation and the associated differences 

in leaf anatomy. Under nonlimiting N supplies, C4 crops require 75% of the N required 

by C3 crops for the same biomass production, so C4 crops contain a smaller proportion of 

metabolic tissues. Differences in leaf anatomy led to an estimate of 25% lower radiation 

use efficiency for C3 [43]. Curves proposed by Lemaire and Gastal [43] indicate whether 

the crop’s N status is deficient, optimal, or excessive for the purpose of achieving the max-

imum crop growth, categorizing plants into these three categories. 

Even if the plants are well-nourished with N, research has demonstrated that PNC 

gradually decreases in the leaf–stem ratio with the crop’s maturity, resulting in leaves 

with high N content and stems with low N content [20]. The uncertainty of the %Nc is 

dependent on the biomass level [40]. Additionally, the fewer moments of observation and 

experimental treatments kept the uncertainty at a high level [40]. A minimum of eight to 

ten experiments are recommended to estimate an accurate and precise dilution curve. A 

minimum of three sampling times during the season is advisable. It may be more advan-

tageous to increase the number of sampling times than to increase the number of different 

fertilization doses above four. It is still necessary to adjust the curve parameters and un-

derstand the origin of their differences, and new and more rigorous methods for this 

achievement are required. 

3.3. NNI 

Using Nc curves based on allometry between plant metabolic and structural compart-

ments, the NNI can be calculated as follows (Equation (7)) [20]: 
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NNI = Na/Nc, (7) 

where Na represents the real PNC. This index allows for an accurate assessment of crop N 

status diagnosis, fertilizer recommendation, and yield [44]. Estimating this index requires 

the collection of destructive samples, drying and weighing the biomass to grind these 

samples, and analyzing Na by the methods of Kjeldahl or Dumas [45]. Although these 

classic methods have high accuracy for each sample, they only characterize the crop at its 

collection point, which makes the method very laborious, costly, and time-consuming, 

and is not practical for evaluating the crop at all specific points in the field [46,47]. 

An NNI value equal to or close to 1 means that the crop is at the optimum value to 

achieve maximum yield. This can be used as a yield and quality benchmark to correct crop 

management gaps [48]. Note that the NNI can only diagnose the crop N status, but is 

unable to quantify the dose of N to be top-dressed, especially when NNI < 1. It is necessary 

to clarify the relationship between the crop N status and the N dose to be applied depend-

ing on the crop growth period, and to achieve an in-season production process [20]. 

4. Assessing Crop NNI by Non-Destructive Methods 

To mitigate the complex and time-consuming procedure of data collection and anal-

ysis by classical methods to determine the NNI, we estimated it remotely using optical 

sensing [6,15–20]. 

Sensors measure reflected light at certain wavelengths. They are well correlated with 

the NNI, and are used to calculate VIs [16,19]. Indirect NNI is assessed by the relationship 

between VIs and PNC values [21,22]. Some alternative strategies to direct field sampling 

have been successfully used to estimate PNC remotely and non-destructively (Table 1). 

Table 1. Sensors used in various crops and crop growth stages to estimate indirect NNI. 

Type of sensor Crop Location Growth stage Reference 

Leaf-based sensor Wheat 
Southwest 

France 
Anthesis [13] 

Leaf-based sensors Wheat China Multi-growth stages [49] 

Leaf-based sensors Wheat 
Northern 

Spain 

Stem elongation, leaf-

flag emergence, and 

mid-flowering 

[16] 

Ground-level canopy 

sensors 

Perennial 

ryegrass 
Denmark Multi-growth stages [19] 

Ground-level canopy 

sensors 
Wheat Spain Tillering [50] 

Ground-level canopy 

sensors 
Maize 

Northeast 

China 
V5–V10 growth period [51] 

Ground-level canopy 

sensors 
Maize China V6-V12 growth period [52] 

Ground-level canopy 

sensors 
Sweet pepper Spain Multi-growth stages [53] 

UAV-mounted multi-

spectral camera 
Red fescue Denmark Multi-growth stages [6] 

UAV-mounted multi-

spectral camera 

Perennial 

Ryegrass 
Denmark Multi-growth stages [6] 

Satellite platforms Rice 
Northeast 

China 
Stem-elongation [21] 

Vegetation reflectance is normally characterized by the absorption of radiation by 

plant pigments in the visible spectrum (VIS) between 400–700 nm [54], and by high 
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reflectance in the near-infrared region (NIR) between 700 and 1000 nm, which results from 

the structure of the canopy (mesophyll) and the effect of leaf density [55]. The most im-

portant pigments for photosynthesis are chlorophyll a and chlorophyll b, for which the 

maximal absorption of chlorophyll a in the red region is 662 nm, and in the blue (B) region, 

430 nm; for chlorophyll b, the values are 642 nm and 453 nm, respectively. However, the 

relationship between chlorophyll and PNC varies according to the measuring unit, 

growth stage, and N fertilization level. Most developed spectral indices focus on the so-

called “red edge inflation point”, where ratios (commonly called indices) between the VIS 

and NIR regions are calculated [56]. This chlorophyll-based reflectance plays a significant 

role in crop N status assessment at the leaf scale. However, at the canopy level, some var-

iables act in a way that they do not at the leaf level, such as in terms of leaf area index 

(LAI), leaf inclination, soil coefficient, and view–illumination geometry. It should be noted 

that N-related VIs are highly correlated with N accumulation in the leaf than in other 

aboveground parts of the plant. These confounding factors can be alleviated by some veg-

etation indices (VIs). Specifically, in the early growth stages, the exposed soil background 

accounts for major variance in the signal detected by the sensors. As LAI increases, the 

signal from the soil background gradually decreases while the multiple scattering caused 

by the canopy structure increases [57]. Fu et al. [57] indicated five VIs that minimize con-

founding factors from ground cover (Table 2). 

Table 2. VIs to minimize confounding factors. 

VI Abbreviation Wavelengths 

Ratio Modified Chlorophyll Absorption in 

Reflectance Index/ Optimized Soil-Ad-

justed Vegetation Index 

MCARI/OSAVI 550, 670, 700, 800 

Transformed Chlorophyll Absorption in 

Reflectance Index 
TCARI 670, 700 

Ratio Transformed Chlorophyll Absorp-

tion in Reflectance Index/ Optimized Soil-

Adjusted Vegetation Index 

TCARI/OSAVI 550, 670, 700, 800 

Canopy Chlorophyll Content Index CCCI 690–730, 780–1400 

Yu et al. [58] proposed an NNI remote sensing index (NNIRS) based on two VIs, which 

showed high performance in estimating crop N status. However, before making its esti-

mate, this indirect NNI is required to estimate PNC and aboveground dry biomass to di-

rectly relate the NNI with the VIs [57]. 

Previous studies have suggested classifying the non-destructive NNI acquisition 

methods by corresponding platforms [20,59,60], as will be described in Sections 3.1. to 3.4. 

of this document. The main difference between the sensors is in their practical applicabil-

ity [61]. 

4.1. Leaf-Based Sensors 

Leaf-based sensors do not require sampling for laboratory chemical analysis and are 

faster than traditional NNI measurement methods. Although they do not directly estimate 

N concentration in leaves, they remotely measure the chlorophyll content in the chloro-

plasts. Crop reflectance provides information about the chlorophyll content, and, conse-

quently, about the N concentration. However, chlorophyll meter values are easily affected 

by crop varieties, growth stages, years, leaf thicknesses, leaf positions, and environmental 

stress [62–64]. 

Some authors [65–67] have tested the SPAD-502 (Konica Minolta, Tokyo, Japan) and 

Hydro N-Tester (Minolta, Japan) chlorophyll meters, and have highlighted that SPAD 

meters tend to be saturated with high chlorophyll content [68]. Other sensors, such as 
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Dualex 4 (Force-A, Orasy, France), are more suitable for measuring the NNI in situations 

in which high concentrations of chlorophyll are present [69] and when the crops are still 

at the beginning stages of development [70,71]. Chlorophyll content increases throughout 

the crops’ growing season, so the accuracy of chlorophyll meter estimates tends to in-

crease with foliar N concentration. The accuracy of chlorophyll meters can be affected by 

factors such as leaf thickness, leaf angle, and leaf texture, which can influence the amount 

of light reflected. As the crop cycle progresses, although foliar N concentration is high, 

these factors tend to make measurement by chlorophyll meters more difficult. On the 

other hand, the accuracy of fluorescence meters can be affected by factors such as the 

moisture content of the sheet and the presence of other pigments that can interfere with 

the fluorescence signal. As the vegetative cycle progresses, these factors decrease, facili-

tating measurement by sensors such as Dualex. 

Although Fiorentini et al. [72] found a mean significant relationship between SPAD 

readings and the chlorophyll concentrations in leaves (R2 = 0.47), it’s only accurate to 

measure each site-specific at a time [73,74], and only at the one-leaf level [46,47,67,75]. This 

is a problem for measuring the crop N status accurately and quickly in the entire field. 

4.2. Ground-Level Canopy Sensors 

To overcome the applicability difficulties experienced when using leaf-based sensors, 

ground-level canopy sensors can be used. These can be active or passive sensors [20]. 

Passive sensors read the crop reflectance using daylight as the light source, revealing 

positive results in terms of the ratio between NIR and R. Fitzgerald et al. [76] used Field-

Spec Handheld to demonstrate that the canopy chlorophyll content index–canopy nitro-

gen index (CCCI-CNI) index was able to predict winter wheat canopy N (g m−2) from Za-

doks 14–37 with an R2 = 0.97. Palka et al. [77] also used a passive hyperspectral FieldSpec 

HandHeld 2 (ASD Inc., Falls Church, Virginia, USA), indicating that CCCI-CNI is a prom-

ising index for estimating the PNC of winter wheat until Zadoks stage 49. They used the 

normalized difference vegetation index (NDVI) and normalized difference red edge index 

(NDRE), which are based on the fundamental principle that the PNC of green leaves is 

closely related to chlorophyll content. The NIR band-based VIs can effectively detect the 

nutritional status of durum wheat (R2 = 0.70 on average) [72]. However, the NDVI, NDRE, 

and CCCI do not account for the physiological dilution of %N as a function of biomass. 

This makes it difficult to estimate crop PNC throughout the vegetative period because 

NDVI becomes insensitive to increasing biomass, becoming “saturated”. When canopies 

close, NDVI stops increasing, but PNC continues to increase along with biomass. Remote 

estimation of biomass using VIs alone is quite difficult, but when combined with crop 

modeling, very satisfactory results can be achieved [76]. In addition, the efficiency of such 

sensors is influenced by weather conditions, including cloud cover, dust, and solar zenith 

angle [78,79]. Due to their high cost, they are mostly used in scientific research rather than 

on-farm [21]. 

Active sensors work differently and are independent of natural light [80], reading the 

light reflected by the crop and emitted by the sensor light emitters, and may require some 

calibrations [81–83]. A recent literature review [20] identified some active canopy sensors, 

such as GreenSeeker (Trimble Navigation Limited, Sunnyvale, CA, USA), Crop Circle 

(Holland Scientific Inc., Lincoln, NE, USA), and RapidSCAN (Holland Scientific, Lincoln, 

NE, USA), to remotely estimate crop N status and support precision crop management 

[20]. 

Readings made by the GreenSeeker sensor allow for the measurement of a crop’s 

reflectance in bands R (650 nm) and NIR (770 nm), and the calculation of two VIs which 

are highly correlated with winter wheat [67,83]. The use of this sensor is compromised by 

the noise caused by the water in the background, which occurs during the early growth 

stages of rice [84,85]. The first index is NDVI, the use of which is compromised in N top-

dressing, as it can become saturated under conditions of high leaf area index or medium 
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biomass [86,87]. The second index, which is the Ratio Vegetation Index (RVI), has a weak 

relationship with biomass, especially under conditions of sparse vegetation cover [88]. 

The choice of the most suitable VIs varies with the growth stage of the crop at the 

time of the imagery collection, but also with the number of bands included. Sensors with 

three or more bands performed better than those with two bands [89]. 

Crop Circle 430 is an example of a sensor with three bands (R (670 nm), Red-Edge 

(RE) (730 nm)). Some authors [90,91] conclude that VIs based on the RE band of the Crop 

Circle sensor are more reliable than NDVIs derived from GreenSeeker. Even so, Crop Cir-

cle 430 is able to better appraise the N status of winter wheat [83], but is less sensitive to 

height than Crop Circle 470. Chen et al. [71] suggest combining various sensors, such as 

Dualex 4 and Crop Circle 430, to better predict the maize NNI rather than using only one 

sensor. At a high level of accuracy, it is possible to use more complex sensors, such as 

Crop Circle Phenom, which is capable of reading several parameters, and integrating 

them with ML methods in management information to improve maize NNI prediction 

across the different N rates and drainage and tillage practices [92]. 

Another example of an active sensor is the RapidSCAN, which groups the radiation 

into 3 bands and is not affected by the 0.3–3 m measuring height [88]. This sensor allowed 

for the calculation of the N Sufficiency Index (NSI) through standard VIs, and for the es-

timation of NNI in rice as well as in wheat [88,93]. The results achieved by Aranguren et 

al. [16] revealed that when using the VIs to estimate the NNI, the exponential models out-

performed the linear models during the entire growth period, and NNI predictions could 

be made using a single model with absolute NDVI. To improve the accuracy of the NNI 

estimation in different conditions, such as under diverse soil, weather, and management 

conditions, the data from this sensor can be integrated with Genotype × Environment × 

Management information [20]. 

For real-time measurement of plant N status during N fertilization, on-the-go crop 

sensors can be installed to measure R and NIR reflectance. The most well-known systems 

include Yara N-sensor, Crop Circle, Trimble GreenSeeker [94], and, recently, Fritzmeier 

ISARIA [95]. This last sensor combines on-the-go spectral measurement of the crop stand 

with soil productivity maps (map overlay mode). As shown by Pedersen et al. [96], the 

combination of soil information with the diagnosis of plant N status by spectral measure-

ment has brought about the greatest economic benefits of variable rate application of N 

fertilizers. 

4.3. UAVs 

The use of UAVs is becoming more and more conventional, mainly because it allows 

for the collection of imagery with high spatial resolution, relatively low operating cost, 

and near real-time image acquisition, thus providing a solution to the problems faced by 

ground canopy-based and leaf-based sensors. Types of UAV airframes are numerous, but 

the two most common are the roto copter and the fixed wing. With each having its 

strengths and weaknesses, the flight characteristics of roto copters make them more suit-

able for agricultural research than fixed wings. These tend to be useful for applicate prod-

ucts [97]. When using these instruments to calculate the NNI, there is an essential work-

flow to load UAV-based data into precision farming machinery or to perform statistical 

analysis for research purposes. It starts with creating the flight plan, collecting imagery 

during the flight, combining and processing imagery (stitching), and, finally, extracting 

the resulting data. Some cloud-based computing services have eliminated the need for 

expensive processing software and hardware [97]. 

National regulations decide when and where UAVs can be used, including flight 

height and speed limitations, line-of-sight and night operation settings, and restrictions 

near airports and people agglomerates. Ensuring safe missions is necessary to prevent 

other manned aircraft operating in the same airspace, birds of prey, and remote controller 

connection disruptions from resulting in UAVs escaping [97]. 
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According to the review by Olson and Anderson [97] of the wide variety of remote 

sensors that can be used in UAVs, the three most predominant types in agricultural ap-

plications are color (RGB), spectral, and thermal cameras. They add that spectral sensors 

are classified as passive sensors in terms of their source of electromagnetic radiation. The 

RGB cameras capture light in the VIS region, grouping the radiation into three bands (Red 

(R), Green (G), and (B), producing images that can be incorporated into automated object-

based classification methods and other machine learning methods [98] in the treatment of 

information and in the generation of IVs [99–103]. The high resolution of the captured 

images is unattainable by other cameras, and allows for the creation of digital models of 

crop heights and improvement of the accuracy of classification software [97]. These cam-

eras allow for the estimation of leaf color, lodging, and canopy cover. Wang et al. [104] 

demonstrated the usefulness of these high-resolution images in removing background in-

terferences to estimate the N nutritional status of rice plants at the vegetative phase of 

early crop stages. 

Spectral cameras, in this case, multispectral and hyperspectral cameras, capture VIS, 

NIR, and shortwave infrared (SWIR) segments of the electromagnetic spectrum [97]. 

These cameras can be used to estimate indirect parameters related to NNI, such as leaf 

nitrogen content, leaf area index, leaf chlorophyll content, and plant biomass. Further-

more, it can indirectly measure nutrient deficiency in real time by sensitivity to vegetative 

discolorations and photosynthetic pigment content. Despite hyperspectral cameras focus-

ing on the same portions of the electromagnetic spectrum as multispectral cameras, they 

can classify them into hundreds of narrow bands. Hyperspectral cameras are more expen-

sive and require a greater capacity to store hyperspectral data cubes and perform data 

processing. However, this type of camera makes it possible to distribute the light reflected 

by the surface into hundreds of bands, grouping them together to make the reading of 

agronomic parameters of crops more comprehensive [105]. Cilia et al. [106] used hyper-

spectral sensors to monitor maize N status, and their results showed that the modified 

chlorophyll absorption ratio index/modified triangular vegetation index 2 

(MCARI/MTVI2) and MTVI2 were related to N concentration (R2 = 0.59) and PDM (R2 = 

0.80), respectively. In the Mediterranean area, Fiorentini et al. [72] demonstrated that the 

modified soil-adjusted vegetation index 2 (MSAVI2) showed a better correlation with the 

chlorophyll concentration (mg g−1) of durum wheat leaves, with an R2 value of 0.68, and 

for the NNI, the NDRE vegetation index performed better, with an R2 = 0.85. 

Pereira et al. [104] assessed the performance of UAV and satellite platforms in pre-

dicting the N parameters in pasture fields cultivated under an integrated crop–livestock 

system, considering PNC, PDM, and NNI. The UAV multispectral data resulted in the 

best prediction accuracies (R2 = 0.84: PNC, 0.70: PDM, and 0.84: NNI). The combination of 

UAV_RGB with either PlanetScope (R2 = 0.79: PNC, 0.67: PDM, 0.77: NNI) or Sentinel-2A 

(R2 = 0.76-PNC, 0.57-PDM, 0.69-NNI) improved the performance of the three platforms 

individually. The association between high spatial and spectral resolutions contributed to 

the highest prediction accuracy in estimating N variability in pasture fields using remote 

sensing data. UAV-based remote sensing and advanced computational algorithms, in-

cluding artificial intelligence, ML, and deep learning, are progressively being applied to 

make predictions in many farming industries. UAVs with various advanced sensors, in-

cluding RGB, multispectral, hyperspectral, and thermal cameras, have been used for crop 

remote sensing applications [105]. Specifically, research with spectral sensors highlights 

the red-edge chlorophyll index (RECI), the blue nitrogen index, and the red-edge normal-

ized difference index (RENDVI), as well as their very strong relationship with crop N sta-

tus for ryegrass (Lolium Perenne L.), rice, and sorghum (Sorghum bicolor L.). These and other 

indices have shown strong relationships depending on the crop growth stage, the choice 

and definitions of indices and parameters, and sensing time [97]. 
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4.4. Satellite Platforms 

Satellite platforms allow for the remote sensing of crops by free image acquisition, 

and, consequently, estimate crop N status in large-scale plots. Satellites such as Sentinel-

2, launched by the European program Copernicus and the European Space Agency (ESA), 

provide more information on the detection of cultivation parameters, with a high resolu-

tion and a short revisit time [107,108]. Currently, Sentinel-2 has a revisit time of 5 days, 

capturing 13 spectral bands with 10 m of VIS/NIR bands, 30 m of NIR/SWIR bands, and 

60 m of atmospheric bands as the ground spatial resolution [109]. Through these bands, 

Crema et al. [110] calculated CCCI and NDRE indexes in maize, allowing NNI to be esti-

mated directly from remote sensing (R2 = 0.76 and 0.79, respectively). Meier et al. [111] 

demonstrated advantages in terms of area coverage by increasing the spatial resolution 

from the current 10–20 m to the ideal 5 m for all spectral bands in a future upgrade of the 

Sentinel-2 satellites. For the next generation of this constellation, the EC [112] considered 

an increase in the spatial resolution of the VIS to SWIR bands to 5–10 m. 

Other satellites, such as RapidEye, have a higher spatial resolution (5 m) and a revisit 

time of only 1 day. Characteristics that make this satellite one of the most suitable for 

assessing both biomass variation in vegetation [112] and N content detection [113–116] 

allow it to be used on a large scale [117]. Statistical analysis has indicated that both MCARI 

and the enhanced vegetation index 2 (EVI2) were the best VIs for estimating PNC and 

PDM, respectively, in areas typically characterized by a Mediterranean climate. However, 

published results using VIs from RapidEye imagery to assess vegetation status and crop 

parameters are still limited. Given the periodicity of the images and their resolution, in 

arable crops, for example, it can be very interesting to estimate the NNI using PlanetScope, 

which has a daily frequency and a spatial resolution of 3 m [118]. 

In recent years, the determination of crop N has become interesting, and has grown 

using spectroscopy (hyperspectral) imaging [119]. The ESA is conducting studies for the 

candidate Copernicus Hyperspectral Imaging Mission (CHIME) [120] and Land Surface 

Temperature Mission (LSTM) [121]. The ESA has become a world leader in Earth obser-

vation, especially for European areas, with the development of cutting-edge technology 

capable of capturing information from the Earth’s surface with great accuracy and reso-

lution. 

Some private missions, such as those already mentioned, i.e., RapidEye and Plan-

etScope, and others, such as WorldView, are recognized by the ESA. As their satellites are 

closer to the Earth’s surface, they can capture images with a higher resolution. However, 

acquiring these images is expensive compared to those of ESA, which are free of charge. 

Apart from the advantages of satellite platforms, atmospheric phenomena such as 

the occurrence of clouds may affect the images, restricting their usage [17,95]. Even when 

recently launched satellites surpass these obstacles, the difficult situation of temporal res-

olution becomes worse when these phenomena occur during critical stages of crop devel-

opment. Without the collection of images at critical growth stages, an effective manage-

ment strategy based on satellite data becomes impossible. In addition, the presence of sur-

face water in the field, such as the surface water layers in rice crops [20], influences plant 

reflectance. 

In summary, each type of NNI indirect acquisition platform has its applicability. Each 

is adapted to different crop monitoring needs and maintain great precision in the indirect 

estimation of the crops’ N status, as shown in Table 3. 

Table 3. Applicability of different indirect acquisition platforms for crop N status. 

Sensor 
Parameter  

Remotely Detected 
Index R2 Spatial Resolution Reference 

Leaf-based 
Leaf chlorophyll  

content 
- 0.47 Leaf-level [72] 

Ground- NNI CCCI-CNI 0.97 cm [76] 
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canopy 

Ground- 

canopy 
NNI NDVI; NDRE 0.70 cm [72] 

UAV PNC 
MCARI/MTV

I2 
0.59 cm [106] 

UAV PDM MTVI2 0.80 cm [106] 

UAV 
Leaf chlorophyll con-

tent 
MSAVI2 0.68 cm [72] 

UAV NNI NDRE 0.85 cm [72] 

UAV NNI  0.84 cm [104] 

Satellite NNI CCCI 0.76 10 m [110] 

Satellite NNI NDRE 0.79 10 m [110] 

5. Integrating Remote Sensing Data in CMs 

5.1. Processing Remote Sensing Data 

Remote sensing technologies manage to generate a significant amount of data that 

aids in making well-informed decisions, but diminishes the ability to integrate and ana-

lyze the growing amount of data coming from different sources. A combination of this 

information can be used to make N fertilization recommendations, through algorithms 

[122,123] highlighting the importance of data analysis methods by ML [124,125]. New ad-

vances in ML have increased the possibility of estimating agronomic parameters from 

digital information. It is necessary to continue research on digital variables from direct 

measurements and to select the one that is most relevant for each decision. Researchers 

should focus on estimating agronomic parameters of interest using sensors to inform de-

cision systems, and these should be implemented and adapted to specific points [126]. 

ML can unravel non-linear problems in diverse datasets [127]. Random forest (RF), 

support vector machine, and artificial neural network regression have been employed for 

the estimation of N status and NNI. Research has demonstrated that the least squares 

support vector machine may be a promising tool for quantifying N status and evaluating 

NNI values [127–129]. Ge et al. [130] demonstrated reliable performance of the RF model 

in estimating PNC by merging the VIs with the R, Green, and B bands. Using the RF model 

to relate Nc estimated by UAV imaging with measured Nc, they obtained coefficients of 

determination of 0.84 and 0.82 in the first and second years of study, respectively. Com-

pared with other linear or ML regression models, some studies have shown that RF is able 

to better estimate the crop N nutritional status [131,132]. However, estimating Nc in the 

most advanced phenological stages results in values below the measured Nc. Ge et al. [130] 

presented two possible reasons: (1) the problem of VIs saturation and (2) major errors and 

uncertainties in the RF model caused by changes in the structural plant’s morphology 

(such as leaf senescence or panicle or ear emergence). 

It is necessary that research reflects field conditions, which has not been the case in 

trials conducted in small plots [94]. N plot experiments are very useful for studying the 

influence of different doses of N on plant growth, facilitating the collection of destructive 

samples, and remote sensing. Although studies performed on small plots using nearby 

sensors usually allow for more accurate results than the results obtained in studies using 

remote sensing on farmer fields, it is necessary to determine the modeling accuracy on a 

larger scale in farmer fields [15]. 

In this sense, some research projects have emerged recently, such as the MechSmart 

Forages Project [133], which identifies the need to review traditional cultural itineraries in 

forage production with new technological-based proposals based on soil, crop, and soil 

monitoring for the rational use of production factors. This need is amplified by the context 

of climate change and by the need to sustainably intensify the production of these crops, 

which support the extensive animal production systems in the Alentejo region. Following 

this project, another was put into practice, ISOmap Forragem [134], which reinforced and 

consolidated the knowledge on the integrated use of precision agriculture, mechanization, 
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and digitization technologies in technical itineraries of conservation agriculture during 

the production of forage. The main objective of the ISOmap Forragem project was to de-

sign methods for approaching and using soil and crop monitoring technologies, and for 

the application of variable dose factors that guarantee the productivity and sustainability 

of crops in Mediterranean regions. These projects are of great importance in studying the 

methodology for applying variable rate factor application technologies and transferring 

this knowledge to the end user, namely, the farmer who needs to make decisions about 

the quantities of production factors to apply. Given the specific conditions of each region 

and the context in which nitrogen fertilizers are involved, these technologies must be 

made available to the farmer so that they can be used in crop production. 

The diagnosis of crop N status in farmer fields leads to the guiding of in-season top-

dressing N applications through NNI maps that identify different management zones 

with different nutritional statuses. However, these maps only indicate the status of the 

crop, and not the amount it needs to reach optimal nutritional status [15]. An N recom-

mendation system sensor–approach fusion mainly consists of using the proposed algo-

rithm differently for different management zones, as defined by soil variability. It may 

involve the use of more complex combinations, such as CMs, ML, and crop monitoring, 

to improve the large-scale crop N diagnosis models [15,29,125,135–137]. 

5.2. Modeling Plant Nutrition and Requirements 

While sensory techniques are useful for measuring Nc, CMs are useful for estimating 

crop N requirements [138]. Modeling is the process of developing a mathematical repre-

sentation of a system. The fact that N is so dynamic in soil–plant systems makes the accu-

rate assessment of crop N status a rather complex task. In this sense, CMs can simulate 

the dynamic physiological process of crop growth and development based on the quanti-

tative relationships between crop growth and environmental conditions, including cli-

mate, soil conditions, information on crop genotype, and management strategies [57]. 

The International Atomic Energy Agency (IAEA) [30] highlights two main objectives 

for crop and agricultural system models: (i) to better understand the cause–effect relation-

ships in a system and to provide improved qualitative and quantitative interpretations of 

the behavior of that system—the result of this type of effort is an increase in knowledge; 

thus, this is a research-oriented goal; (ii) to better predict system behavior to immediately 

improve the control or management of the system. The result could be a tool/system (soft-

ware/hardware product) designed for a specific application [30]. The process of modeling 

can be divided into four broad stages: studying/building, calibration, testing, and appli-

cation, in this order. Often, problems encountered at the calibration and testing stages 

cause models to be returned to the building stage to be corrected, and the whole process 

needs to be repeated [30]. 

The algorithms represented in the models express the connection between plant pro-

cesses such as partitioning, biomass growth, respiration, plant water consumption, and 

photosynthesis, and environmental variables such as daily temperature, photoperiod, wa-

ter, and available N in the soil [139,140]. CMs have been developed for several purposes, 

such as analysis of yield gaps, to support decision making and to reduce the time and 

costs spent on field research [138]. These models can provide dynamic simulations, as well 

as predictions of crop canopy N status, in imaginary situations [57]. 

Many mechanistic and ML methods have been developed because they represent the 

interaction between soil, plants, and climate in a sophisticated way, but also because com-

putational capacity has increased, which is fundamental to dealing with large data sets. 

However, it is necessary to ensure the applicability of these models [29]. 

The availability of correct models adjusted to each specific situation affects the appli-

cation of simulation models in the cases of farmers. In addition, the correct application of 

these models also depends on the availability and quality of the information that allows 

for the model to be run [30,141]. STICS is a model that focuses on the water and nitroge-

nous balance of the soil–crop system. Inputs consider the climate, the soil, and the 
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cropping system [42]. Most of the problems that affect crops are of a multidisciplinary 

nature, which demonstrates the importance of biophysical and socioeconomic aspects in 

addition to the soil–plant–atmosphere relationship. It is usually favorable to approach 

whole systems, since one part affects all others of the system. It is important that the data 

collection and experimental procedures are specified so that data handling structures and 

analytical approaches can be defined and developed. In fact, a major problem in CM ap-

plication is that some essential model input parameters are difficult or impossible to 

gather, and the crop information provided by the model is limited to discrete points. A 

combination of CMs and remote sensing is one of the most promising methods for esti-

mating crop N status in the field [57]. 

FertiliCalc was developed by the University of Córdoba to calculate the fertilization 

doses of N, phosphorus (P), and potassium (K). It also estimates soil acidification and N 

losses [142]. The system includes more than 150 crops from which users can choose and 

add soil data, and the fertilization strategy for P and K. Next, the fertilizers to be applied 

were selected. Precipitation is considered in order to calculate N leaching. This system is 

also the basis for several apps for fertilization calculations developed by public institu-

tions in Spain [142]. This and other CMs are simplified descriptions of natural systems, 

being limited by the lack of information regarding some variables (e.g., production, field, 

soil, culture, biotic and abiotic factors, cultural itinerary) [23]. In Mediterranean agricul-

tural areas, there is great spatial variability in the physical and chemical properties of the 

soil, even in the smallest fields [3]. This increased uncertainty in the simulations can re-

duce the model’s overall accuracy. Updating with model variables from more than one 

CM greatly increases the accuracy in simulations and the understanding of spatial varia-

bility [143,144]. A crucial issue of this multi-modal (MM) simulation strategy is the ex-

haustive calibration process. It usually requires well-trained users to ensure satisfactory 

results. The development of an automatic calibration process would ensure model stand-

ardization [145]. 

One approach for spatial simulation of crops is based on the integration of geo-

graphic information systems and the application of CMs at the plot scale. It is intended to 

predict the growth, development, and crop production in different environment and ag-

ronomic management scenarios at each site-specific point. Firstly, the area in question is 

divided into a grid of cells, which are considered the site-specific points; then, in each of 

these individual cells, the model is run [146]. 

5.3. Integration of Remote Sensing into CMs 

Although crop models provide reliable simulation performance, it can become com-

plex to ensure their efficiency. Despite spatiotemporal limitations in observation, remote 

sensing techniques can be another way to increase the accuracy of the models and to pe-

riodically update the model, considering the spatial variability in the plot [23,147]. How-

ever, this coupling presents some difficulties [23–25]. CMs deal with different crop growth 

stages and with different PNCs that come from the spectral bands. These measurements 

are highly dependent on the growth stages, and may show insufficient results in the initial 

stages when the vegetation cover is very low [26] or be influenced by the phenomenon of 

saturation in more advanced phenological stages [27,28]. There is still a need for some 

knowledge regarding PNC determination via remote sensing. Only if these measurements 

are valid can CMs be adjusted to make them more useful as precision N fertilization pre-

scription techniques [145]. 

Integration of remote sensing data into crop growth models is feasible through ML 

models. However, it is important to bear in mind that the result is only reliable if all the 

data are correct and represent reality. First, the remote sensing data must be collected by 

the most suitable sensor, which must capture the desired radiation to estimate the desired 

crop parameter. As for the growth models used, they must consider the characteristics of 

the environment surrounding the crop and the management practices that are representa-

tive of the region in which they are applied, as well as the parameters of the crop in 
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question. For example, it is not sensible to use a CM adapted for covered crops (in green-

houses) in crops grown in the ground in an extensively rainfed situation in the Mediter-

ranean region. Finally, the integration of the remotely detected crop status with the crop 

needs estimated by the CMs made by ML methods is only possible with well-calibrated 

models adjusted to each situation. From the review which we have carried out, it can be 

noted that RF models can constitute a very viable option to integrate measurements of the 

nutritional N status of crops with their need to achieve optimal production. 

Better integration of several types of data, sensors, and algorithms could be carried 

out to validate field data and to help the large-scale application of algorithms [29]. To 

integrate the data on recommendation systems, Cortini et al. [29] identified three exam-

ples with increasing levels of complexity. Firstly, sensor fusion combines free remote sens-

ing products with low-cost proximal sensors as inputs into an empirical N recommenda-

tion system. Secondly, algorithm fusion combines empirical N recommendation systems 

with ML techniques to contribute knowledge regarding field properties. Finally, high-

level data integration combines soil and crop sensing (either proximal or remote) with a 

crop model. 

In January 2020, the EU launched the Farm Sustainability Tool for Nutrients (FaST), 

aiming to generate fertilization recommendations based on satellite images, crop growth 

models, and meteorological data. Supported by the European Space Program and the EU 

ISA Programme, the FaST digital platform will provide resources for agriculture, environ-

ment, and sustainability of European farmers, member state paying agencies, agricultural 

consultants, researchers, and developers of digital solutions. It is intended to be a world-

leading platform to generate and reuse solutions for agricultural sustainability and com-

petitiveness based on spatial data (Copernicus and Galileo) and other public data or pri-

vate databases. It will also support the common agricultural policy by enabling ML-based 

solutions applied to image recognition, as well as the use and reuse of data from the In-

ternet of Things (IoT), public data, and user-generated data [148]. FaST relies on multiple 

data sources, either connected (online sources) or imported (static sources) into the plat-

form. 

6. Current Challenges and Future Trends 

Given the actual scenario of climate change and economic instability, it is expected 

that the application of CMs will be boosted because they are able to predict future climate 

scenarios and test current agricultural systems. Several well-developed models can be 

found that adapt to different cultivars, environmental conditions, and management prac-

tices. A model is just a representation of a real system, and the quality of the results is 

strongly linked to the quality of the data used by the model. An approach that includes 

several models at the same time can be quite advantageous in the sense that errors and 

uncertainties are bridged by the other models. Improving its projection is a major chal-

lenge on a spatial scale, although several models can be fused or applied to a given regular 

grid. Since CMs often present gaps in forecasts, mainly when crop growth conditions de-

viate from the ideal (biotic and abiotic stresses), data collected by multiple sources of in-

formation, namely, remote sensing, can provide information about the actual growth con-

ditions. 

The integration of remote sensing data in CMs is, indeed, feasible. Attention must be 

paid to the correct collection of data, calibration of the sensors, and the correct filling in of 

the CMs, ensuring that all data are representative of the reality surrounding the crop, and, 

more specifically, to the field in question. With the increase in knowledge regarding re-

mote sensing techniques and their applicability, as well as the continuous facilitation of 

accessibility to sensors, the interest in their use in real farm fields has increased, as these 

sensors are capable of making a quick and expeditious diagnosis of the crop. It is with this 

advance that the need for boosting adapted sensors arises, and satellite missions are being 

launched with the capacity to better group radiation into bands and retain a very signifi-

cant resolution. Applying remote sensing techniques in farmer fields and not just in small 
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experimental plots will contribute to ensuring that they are reliable on a large scale. It will 

also allow for precision N management, aiming to provide the correct fertilization rate for 

satisfying the site-specific requirements of crops, both in space and time. 

7. Conclusions 

Nowadays, it is possible to measure and estimate crop N status using rapid, non-

destructive measurements. There is a significant relationship between the VIs and the 

PNC that allows for indirect estimation of the NNI. However, it should be noted that the 

collection of samples to directly estimate the PNC and the PDM allows for the testing and 

validation of indirect estimation models, increasing their precision. 

There is a wide range of sensors, and the main difference between them is in their 

practical applicability. Some sensors (leaf-based) accurately estimate the crop N status 

with a high precision level; however, they cover a very small area, and may even focus 

only on the leaf level. As discussed throughout this article, the PNC can vary between 

different parts of the plant, and the leaf N content can provide a different estimate of crop 

nutrition than the actual PNC. Other sensors (ground-level, UAVs, and satellites) that 

cover more parts of the plant, or are even able to measure the canopy nutritional status, 

can provide nutritional data on the crop with great precision, requiring less time to collect 

information for a much larger area. According to the literature which we reviewed, be-

tween these sensor types, UAVs allow imagery with high spatial resolution (centimetric), 

relatively low operating cost, and near real-time image acquisition to be collected, provid-

ing a solution to the problems faced by ground canopy-based and leaf-based sensors. RGB 

cameras collect high-resolution imagery that is very useful for removing soil background 

interference in order to estimate the N nutritional status in the vegetative phase of the 

early stages of the crops’ growth. As identified in this review, this is a challenge for Med-

iterranean crops. Spectral cameras allow for the estimation of indirect parameters related 

to NNI, such as leaf N content, leaf area index, leaf chlorophyll content, and plant biomass. 

Finally, existing satellite platforms allow free image acquisition and, consequently, esti-

mate crop N status in large-scale plots. Attention should be paid to the low resolution of 

the images, and use should be restricted in the scenario of adverse atmospheric phenom-

ena. Although some knowledge about the determination of PNC via remote sensing is 

still necessary, mainly in farmer fields, we can define three guidelines to aid in the choice 

of a correct platform according to objective: 

 For measuring the entire field quickly and for free, satellite is the best source of in-

formation; 

 For quickly measuring the entire field with high resolution and a high level of detail, 

UAVs can achieve this crop status N estimate; 

 For measuring a specific point of the field, leaf-based or ground-level canopy sensors 

are very accurate in measuring crop N status, and are very adequate for some meas-

urements in the field intended to achieve the real PNC at these specific points. 

We highlighted the NIR wavelength bands and the VIs MSAVI2, NDRE, and MCARI 

to estimate the leaf chlorophyll concentration, NNI, and PNC, respectively. The EVI2 was 

used for the PDM in areas typically characterized by a Mediterranean climate. 

After the diagnosis of crop N status, it is very important to determine how much N 

fertilizer is needed. In this sense, remote monitoring can be used to adjust models that 

estimate crop needs. The combination of soil information with the diagnosis of plant N 

status by spectral measurement could bring about the greatest economic, agronomic, and 

environmental benefits of the variable rate application of N fertilizers. In Mediterranean 

agricultural areas, there is great spatial variability in the physical and chemical properties 

of the soil, even in the smallest fields. Better integration of several types of data, sensors, 

and algorithms could be carried out to validate field data and to aid in the large-scale 

application of algorithms. The integration of remote sensing data into crop growth models 

is feasible through ML models. First, the remote sensing data must be collected by the 
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most suitable sensor, capturing the desired radiation to estimate the desired crop param-

eter. As for the growth models utilized, they must consider the characteristics of the sur-

rounding crop environment and the management practices that are representative of the 

region in which they are applied, as well as the parameters of the crop itself. 
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Nomenclature 

%Ndff % Nitrogen derived from the fertilizer 

%Ndfs % Nitrogen derived from the soil 

B Blue 

CCCI Canopy Chlorophyll Content Index 

CHIME Copernicus Hyperspectral Imaging Mission 

CM Crop Model 

CNI Canopy Nitrogen Index 

EC European Commission 

ESA European Space Agency 

EVI2 Enhanced Vegetation Index 2 

FaST Farm Sustainability Tool for Nutrients 

FW Plant fresh weight 

IAEA International Agency Energy Atomic 

K Potassium 

LAI Leaf area index 

LSTM Land Surface Temperature Mission 

MCARI Modified Chlorophyll Absorption Ratio Index 

ML Machine Learning 

MM Multi-Modal 

MSAVI2 Modified soil-adjusted vegetation index 2 

MTVI2 Modified Triangular Vegetation Index 2 

N Nitrogen 

Na Real plant nitrogen content 

Nc Nitrogen concentration 

NDRE Normalized Difference Red-Edge Index 

NDVI Normalized Difference Vegetation Index 

NIR Near-Infrared 

NNI Nitrogen Nutrition Index 

NNIRS Nitrogen Nutrition Index Remote Sensing Index 

NSI Nitrogen Sufficiency Index 

NUE Nitrogen Use Efficiency 

P Phosphorus 

PDM Plant Dry Matter 

PNC Plant Nitrogen Content 

R Red 

RE Red-Edge 
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RF Random Forest 

RVI Ratio Vegetation Index 

SDW Subsample fresh weight 

SFW Subsample dry weight 

SWIR Short-wave infrared 

UAV Unmanned Aerial Vehicle 

VI Vegetation Index 

VIS Visible bands 

VRA Variable rate application 
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